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Abstract

On the basis of and in a development of the ideas and results of A.A. Movchan (Sr.), that extend to continuous bodies the
definitions and main fundamental theorems of Lyapunov on stability and instability, a criterion for instability of the equilibrium
position of a one-dimensional non-linearly elastic body subject to potential external forces is established. For the specified simplest
type of continuous elastic system (which possesses, however, a number of fundamental properties of continuous elastic systems
including unboundedness of the operator of linear approximation and discreteness of its spectrum) a theorem of instability by linear
approximation is stated and proved. The method of proof is a version of Persidskii’s sector method.
© 2006 Elsevier Ltd. All rights reserved.

Since the publication (over a hundred years ago) of famous Lyapunov’s famous book “The General Problem of the
Stability of Motion”, research in the field relating to systems with a finite number of degrees of freedom, directly or
indirectly employ (and also develop) his results, ideas and methods, which have proved to be extremely fruitful.

As for research on the stability of continuous systems (systems with an infinite number of degrees of freedom),
in most cases (including previous papers by the author, too) they ignore both Lyapunov’s theory of stability and its
existing (but insufficiently well-known) generalizations to systems of this type.1–9 As a rule the research mentioned
is based upon static or dynamic “criteria”, well-known in this branch of mechanics, whose adequacy to the rigorous
theory and in general to the notion of stability formed in the mechanics of systems with a finite number of degrees
of freedom is far from being indisputable, which gives reasons to doubt its results and conclusions. The alternative to
all of this is perhaps to consider the problems of the stability and instability of continuous systems on the basis of the
corresponding rigorous theory which is what will be done in this paper; specifically, a generalization of Lyapunov’s
theory worked out by A.A. Movchan (Sr.)3–5 is used.

The simplest and clearest (from the standpoint of a mathematical description) type of continuous systems is that
of elastic systems. Conservative elastic systems (including continuous ones) are ideally suited for using Lyapunov’s
direct method in the case of stability: the obvious candidate for the role of Lyapunov’s function (functional) is the
total energy of the system, which is preserved by virtue of the equations of motion. In just this way Movchan gave an
exact meaning to and proved (within the framework of his generalization of Lyapunov’s theory) Lagrange’s theorem
for continuous elastic bodies: the sufficient condition for stability is that the total potential energy should be positive
definite with respect to some specially selected norm.5
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As for instability of the same conservative systems, this question is much more complicated, and there are no results
that provide and substantiate some effective criteria for the instability of continuous bodies. Note that the proofs of
theorems on criteria for instability are much more complicated than the proofs of theorems on criteria for stability even
in the case of finite-dimensional (in particular, conservative) systems. The only simple and natural case a very special
case when the total potential energy (measured from the equilibrium state) is negative definite. Moreover Chetayev
proved (by means of his own well-known theorem) the instability for negative values of the potential energy in the
quite specific (one can say, an odd) case, when the potential energy is a homogeneous function of a certain degree. The
point is that for linear systems (for which the potential energy is quadratic) this result is not of great interest, whereas
non-linear systems of this type are quite unusual or even unreal (the presence of a sign-variable quadratic form that
represents the potential energy of a linearized system, and higher order terms is typical ). Movchan5 presents a version
of Chetayev’s proof (with minimal changes) in the case of “appropriate” elastic continuous bodies, but due to some
features of the non-linear theory of elasticity these simply do not exist.

In the general case, when the potential energy of a finite-dimensional system is not negative definite but can take
negative values in the vicinity of the equilibrium position, the conservatism is by no means involved in the standard proof
of instability, but rests on Lyapunov’s general theorem of instability by linear approximation. However, Lyapunov’s
proof and its modifications are based on the finite dimensionality of a space. As for the two versions of a theorem of
instability by linear approximation presented in Ref. 10, although they relate to equations in infinite-dimensional spaces,
according to the method of proof they are based on the assumption of the boundedness of the linear operator, which
makes it impossible to apply them directly to the problem of the instability of continuous elastic systems, where the
operator of the linearized problem is always unbounded (this is clearly pointed out in the preface to the book mentioned).

Thus, for continuous systems, including conservative ones, there are obviously no proven results of the type of
Lyapunov’s theorem of instability by linear approximation. This is why the present paper is timely: we formulate and
prove a theorem of instability in a linear approximation at least for the simplest non-linear continuous conservative
system, specifically for a one-dimensional non-linearly elastic body with fixed ends. The method of proof employed is
quite different from that of the classical Lyapunov’s proof and from that used in the proofs of corresponding theorems
in Ref. 10; it is a version of Persidskii’s sector method.11–13 The main condition for the applicability of the proposed
version of the sector method to prove the theorem stated, is the discreteness of spectrum of the linear operator, which
also occurs in the general case for continuous elastic systems.

1. The exact and linearized equations of motion for a one-dimensional elastic body

1.1. The main assumptions regarding the coefficients

1.1.1. The energy of the body
We will consider a one-dimensional elastic body occupying the section [0, l] in the reference configuration; values

of variable x ∈ [0, l] correspond to points of the body. Displacement of the body will be called the scalar-valued function
u(x, t), where t is the time, which is assumed to be twice continuously differentiable with respect to both arguments.
The ends of the one-dimensional body are assumed to be fixed:

(1.1)

Denoting the derivative with respect to t for constant x (i.e. the material time derivative) by a dot over a symbol,
and that with respect to x for constant t by a subscript x, we take for the body the following equation of motion (the
momentum equation):

(1.2)

By supposition, the functions �(x) and q(x) are continuous and p(x) is differentiable in the interval [0, l] and all the
three functions are positive. The function �(x, ux) posseses, by assumption, the following properties: �(x, 0) = 0, �(x,
ux) is twice differentiable with respect to both arguments, and the following inequality holds

(1.3)
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where C1 > 0, �1 > 0 are constants. From inequality (1.3) it follows that

Additionally from inequality (1.3) we can readily derive the inequality

(1.4)

The supposed properties of the function �(x, u) are similar: �(x, 0) = 0, it is differentiable with respect to the second
argument, and the following inequality holds

(1.5)

from whence it follows that

Moreover we have the inequality

(1.6)

If we set equal to zero in Eq. (1.2) terms containing the functions � and �, then we obtain the linearized equation

(1.7)

on the right hand side of which there is an operator opposite in sign to the Sturm–Liouville operator.
Note that the mechanical system generating the momentum Eq. (1.2), has a two-fold interpretation: (1) a one-

dimensional elastic body, and hence u(x, t) is a one-dimensional (longitudinal) displacement; (2) a string, in this case
u(x, t) is the transverse displacement. In both cases �(x) is the density per unit length, the term depending on ux is
the elastic stress, while that depending on u is the distributed external potential force (in the case in hand, due to the
positiveness of q(x), the one repelling from the equilibrium position and causing instability).

Denoting integration over the interval [0, l] by angle brackets, and also denoting the velocity field u̇(x, t) by v(x, t),
we can write the total energy of the body e{u, v}, which is obviously preserved during its motion:

(1.8)

We will consider the fields of displacements, velocities and other continuous functions in the interval [0, l] as elements
of a Hilbert space with scalar product

(1.9)

Introducing the linear operator A (we will call it the generalized Sturm–Liouville operator) and the non-linear
operator f by the equalities

(1.10)

we will write the equation of motion as a system of two equations

(1.11)

It is obvious that the pair of zero fields u(x, t) = 0, v(x, t) = 0 is the zero solution (in other words, the equilibrium
position) of the system of Eq. (1.11). It is the instability of this equilibrium position that is under consideration in this
paper.
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Note that the operator A is symmetric with respect to the scalar product on the functions that are twice differentiable
and vanish at the ends of interval:

(1.12)

The linearized system of equations of motion takes the form

(1.13)

and the energy of the body can be represented as follows:

(1.14)

2. Well-known spectral properties of the operator A

2.1. Definition of the operator B and upper and lower estimates for its quadratic form

The spectral and related properties of the generalized Sturm–Liouville operator are well-known. We will list the ones
that are used below. The operator A is semibounded below, it has a real discrete spectrum {an} (n = 1, 2, . . ., ∞), where
lim an = +∞ as n → ∞. We will assume that the eigenvalues are numbered in non-decreasing order: a1 ≤ a2 ≤ . . ..
There is an orthonormal system of eigenfunctions {gn}:

(2.1)

Note that the span of any finite set of eigenfunctions say, span(g1, . . ., gn), is an invariant subspace of the operator, the
same being true for its orthogonal (in the sense of the introduced scalar product) supplement span(g1, . . ., gn)⊥.

By the well-known variational description of the eigenvalues and eigenfunctions the following inequalities hold:

(2.2)

Bearing in mind the feasibility in principle of some further generalizations, we do not exclude the possible existence
of multiple eigenvalues (of finite multiplicity) of the operator A.

We will assume that the first m eigenvalues of the operator A are negative, the next m′ eigenvalues are equal to zero,
and all the remaining eigenvalues are positive:

(2.3)

For convenience we will introduce the dyad operators, in conventional way corresponding to the scalar product
(1.9):

(2.4)

From the specified operator A, we construct a positive definite operator B having the same eigenfunctions and a
strictly positive spectrum. Suppose b0 > 0 is, for now, an arbitrary positive number, for which certain restrictions are
to be taken later. We specify the operator B by the equality:

(2.5)

It is obvious that

(2.6)
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Thus, the operator B differs from the operator A by a finite-dimensional operator that is positive definite in its own
subspace span(g1, . . . , gm+m′ ); in the infinite-dimensional subspace span(g1, . . . , gm+m′ )⊥ the operators B and A act
identically.

Using the fact that for each operator both the finite-dimensional subspace span(g1, . . . , gm+m′ ) and the infinite-
dimensional subspace span(g1, . . . , gm+m′ )⊥ are invariant, and taking into account inequality (2.2) it is easy to prove
the lower estimate for quadratic form of the operator B, refining the character of its positive definitness:

(2.7)

However, for our further analysis we need two more estimates (upper and lower ones) for the same quadratic form in
terms of the quantity 〈u2

x〉. We obtain these estimates, having first introduced the following notation

We will begin with a simpler estimate, namely the upper one:

To obtain the lower estimate, we first consider the operators

The operator B̃ has the same eigenfunctions as B, and for its quadratic form we have the lower estimate

(2.8)

On the other hand we have

(2.9)

From the relations (2.8) and (2.9) we obtain

Hence, we have both upper and lower estimates

(2.10)

3. The space of “displacement – velocity” pairs (phase space)

3.1. The equivalent systems of equations (non-linear and linearized) in phase space; the linear operator of the
linearized system and the special scalar product

3.1.1. The special norm
We will introduce the phase (real) linear space, i.e. the space of pairs

Then the non-linear system of Eq. (1.11) will take the form

(3.1)
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The operator � acting on the space of pairs, can be represented in the form of a pseudo-matrix

where I is the identity operator in the original functional space.
The linearized system of Eq. (1.13) is a result of dropping the term f{w}

(3.2)

Obviously the properties of the operator � are generated by the properties of the operator A. We will consider some
of them. First of all we note that every proper one-dimensional subspace of the operator A spanned on the eigenfunction

gi, generates a two-dimensional invariant subspace of the operator � spanned on the pair of vectors gu
i ≡

∥∥∥∥∥
gi

0

∥∥∥∥∥ and

gv
i ≡

∥∥∥∥∥
0

gi

∥∥∥∥∥. Indeed, let

(3.3)

Then

(3.4)

However, some features of the action of the operator � on these two-dimensional subspaces are different depending
on the sign of the eigenvalue ai.

If ai < 0, we have

(3.5)

(3.6)

Hence, in that case the two-dimensional invariant subspace splits into the direct sum of two one-dimensional subspaces
spanned on the eigenvectors �+

i (with the eigenvalues �i) and �−
i (with the eigenvalues −�i). Note that the exponential

in time solutions of the linearized system

(3.7)

where u+
i0, u

−
i0 are arbitrary numbers, correspond to these eigenspaces. The solutions with increasing exponent indicate

the instability of the linearized system (no matter how that instability is defined), but by themselves signify nothing
regarding the instability of the non-linear system.

If ai = 0, then for w (3.3) we have

(3.8)

The solutions of the linearized system here take the form

and for vi0 �= 0 also move away from the equilibrium state.
If ai > 0, then there is a couple of pure imaginary roots of the characteristic equation, there being no one-dimensional

invariant subspaces (we recall that all the spaces introduced are real); the corresponding solutions are oscillatory (linear
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combinations of sines and cosines):

(3.9)

These solutions remain in the vicinity of the equilibrium position.
We will introduce in the phase space a special scalar product related to the operator B, and related via it to the

operator A and its eigenfunctions:

(3.10)

All the properties of the scalar product obviously follow from the previously proved properties of the operator B and its
quadratic form. Note that the scalar square of w contains as one of the terms the doubled total energy of the linearized
system:

We have

(3.11)

where the additional terms are related only to the subspace span(�1, . . . , �m+m′ ) corresponding to the non-positive
eigenvalues; here

(3.12)

For what follows we need to decompose the operator � into symmetric and skew-symmetric parts with respect to the
introduced scalar product in phase space. For this purpose we find �T w:

Then

(3.13)

On each of the three subspaces

the second Equation of (3.13) takes the form

Hence it follows, that

(3.14)
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(3.15)

(3.16)

From relations (3.15) and (3.16) it is clear that the operators �s and �a are “geared” only in the subspace �0 induced by
the zero subspace of the operator A, and hence they are “ungeared” when it is absent. In the finite-dimensional subspace
�− (correspondingly, in the infinite-dimensional subspace �+) induced by the eigenfunctions of the operator A with
negative (correspondingly, positive) eigenvalues, the operator � is symmetric (correspondingly, skew-symmetric). In
the finite-dimensional subspace �0 the operator � has both symmetric and skew-symmetric parts. For each of the
operators �, �s and �a the subspaces �−, �0 and �+ are invariant; for the restrictions of the operators mentioned
to these subspaces we give their notation an additional superscript taking the values −, 0 or +, respectively. In this case

(3.17)

For our subsequent analysis we introduce in the phase space a special norm that majorizes the one generated by the
scalar product:

(3.18)

(3.19)

where supremum is taken for x ∈ [0, l]. The instability established here is first of all just the one with respect to the
norm (3.18), although in what follows we will derive from this one an instability of a somewhat different kind (more
fitting the traditions and the spirit of the theory of elasticity and the mechanics of solids, in general).

4. The first definition of instability

4.1. The Lyapunov functional and the proof of instability

We will consider the instability of the equilibrium position (the zero solution) of system (1.11) with zero boundary
conditions.

Definition. The equilibrium state w = 0 is said to be Lyapunov unstable in the sense of the norm (3.18), if a number
� > 0 exists, that for any � > 0 a solution w(x, t) exists whose initial value obeys the inequality |w(x, 0)| < �, while for a
certain value t1 > 0 the inequality |w(x, t1)| ≥ � holds.

Such a definition is a special case of the definition of instability.1,2 Instability of the equilibrium position of a one-
dimensional non-linearly elastic body will be considered below first of all in accordance with this definition, and then
also according to somewhat different definition, a special case of a more general Movchan definition.3,4 We emphasize
that when studying instability, it will always be assumed that for any initial state

satisfying the boundary conditions and the assumed conditions of smoothness, at least one classical solution of system
(1.11) exists.

Theorem. (Of instability by linear approximation) Let the linear operator A, specified by the first equality of (1.10),
and setting the potential energy of the one-dimensional linearly elastic body with fixed ends, subject to a linear
distributed external force, have at least one negative eigenvalue. Then the equilibrium position of the corresponding
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non-linearly elastic body, with a non-linear external force (the zero solution of the non-linear system of equations of
motion (1.11)) is Lyapunov unstable in the sense of the norm (3.18).

Note that the hypothesis of the theorem, which concerns the operator A, in terms of the potential energy for
the linearized system (equal to u·Au/2) implies the presence of negative values of this energy for some admissible
displacement fields (vanishing at x = 0; l).

Proof. We introduce the functional

(4.1)

which will be referred to as the Lyapunov functional, although its properties are quite different from those of the
conventional Lyapunov functional (function) used in theorems on instability.

It is almost obvious (and will be shown rigorously) that the term �{u} is as small as desired compared to w·w in a
sufficiently small sphere S(�̄), specified by the inequality

(4.2)

Indeed, if w �= 0 while u = 0, then �{u}= 0 and �{u}/w·w = 0. If u �= 0, then u·Bu > 0 and

(4.3)

By virtue of the definition (3.18)

(4.4)

Since, by assumption, �1 and �2 are positive, then for an arbitrarily small 	 > 0 it is possible to choose �̄ > 0 such that
in the sphere S(�̄) the following inequalities hold

(4.5)

(4.6)

from which it follows, in particular, that at all points of the sphere S(�̄), apart from the centre, the quantity 
{w} is
positive and its logarithm exists.

Having introduced beforehand the functionals

(4.7)

we determine the derivative of the quantity (ln 
)/2 by virtue of the equations of motion

(4.8)

Here we have used the constancy of the total energy of a body and the equality

which follows from relations (3.1), (3.10) and the symmetry of the operators A and B.
According to equalities (3.17)

(4.9)
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i.e., in the subspace �− the actions of the operators �s and � are identical, in the subspace �+ the operator �s is
zero, while in the subspace �0 it acts in accordance with equality (3.15) as follows:

We will find the values of the functional �
{w} on the vectors w+
1 , lying in the sphere S(�̄) and collinear with the

vector �+
1 (the latter is an eigenvector of � and �s with eigenvalue �1 = √−a1):

(4.10)

Thus, in a sufficiently small sphere S(�̄) the values of �
{w+
1 } differ as little as desired from �1 and have a lower

bound of �1(1 − 	). We select a positive number �̃ satisfying the inequality

(4.11)

and call the set of non-zero vectors w a pseudocone �p(�̃), for which

(4.12)

From relations (4.10) and (4.11) it is clear that the intersection of the pseudocone �p(�̃) and the sphere S(�̄) is not
empty. It is obvious that

(4.13)

Due to the continuity of this functional, at the intersection of the pseudocone and the sphere, it takes all possible
values of � obeying the inequalities �̃ < � ≤ �1(1 − 	); moreover, the boundary of the pseudocone ∂�p(�̃) is the
totality of w = 0 and those non-zero vectors w, for which

(4.14)

The boundary of the pseudocone ∂�p(�̃) partitions the sphere S(�̄) into two sets:

If a continuous curve emanates from the first one and for some value of t, without leaving the sphere, enters the second
one, then it inevitably crosses the boundary ∂�p(�̃) (passing through the vertex w = 0 will be excluded in what follows).

We will first show that if the solution w(t) takes a non-zero initial value w(0) ∈ �p(�̃) ∩ S(�̄) and does not leave the
pseudocone, then for some t = t1 it reaches the boundary of the sphere |w| = �̄/2. Suppose the contrary, namely that
w(t) ∈ S(�̄/2), ∀t. Hence,

Note that the above-mentioned impossibility for the solution considered to pass through the vertex of pseudocone
therefore follows.

If the solution for all t > 0 remained within the sphere S(�̄/2), then the inequality

would always be valid, which is impossible. Then, for a certain value of t = t1

(4.15)
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However, this just means instability in Lyapunov’s sense, since it is possible to take a w(0) �= 0, for which

(4.16)

where � is as small a number as desired. Moreover,

(4.17)

Taking � = �̄/2, we obtain complete agreement with the definition of instability.
Thus, it remains to prove (and this is the main thing), that the solution which remains within a sufficiently small

sphere, will in fact not leave at least one suitable pseudocone, which will imply that the set �p(�̃) ∩ S(�̄) is a sector.11

First we will show that the part of boundary of the pseudocone �p(�̃), lying within a sufficiently small sphere, is
located between the boundaries of two cones �(�̃(1 − 	)) and �(�̃(1 + 	)) which differ by as little as desired; by the
cone �(�) we mean here a set of such non-zero vectors w, for which

(4.18)

The boundary ∂�(�) for w �= 0 is specified by the equality

(4.19)

In what follows it will always be assumed, that w �= 0. Let w ∈ ∂�p(�̃).
Then

and in the sphere S(�̄), by virtue of the second inequality (4.5), we have

(4.20)

If the trajectory w(t) emanating from the interior of the pseudocone �p(�̃), were to arrive at a time t2 at its boundary,
then the quantity �
{w} at this time would not increase and, hence, its time derivative, by virtue of the system (1.11),
could only be non-positive (this follows from Taylor’s formula for �
{w} in the vicinity of t = t2). If the analysis reveals
that at any point w ∈ ∂�p(�̃) ∩ S(�̄) the derivative by virtue of the system is positive, then this means that a trajectory
emanating from the interior of the pseudocone cannot reach its boundary and remains inside it.

We will obtain the time derivative of the quantity �
{w} by virtue of system (1.11) and we will show that positive
values of �̃ exist, for which this derivative is positive on the part of the pseudocone boundary ∂�p(�̃) ∩ S(�̄):

(4.21)

By virtue of inequalities (4.6), w·w/
 is close to unity in the sphere S(�̄), and so the sign of the derivative is
determined by the sign of the expression in brackets in the last of equalities of (4.21). This expression (using equality
(4.19)) can be represented as

(4.22)

The modulus of the last term is bounded by the quantity �̃2	(1 + 	) and so is as small as desired in a sufficiently
small sphere S(�̄). We will show that this also holds regarding the penultimate term, from which it will follow that the
sign of Y{w} is determined by the sign of the sum of first two terms.
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Note, that if w =
∥∥∥∥∥

0

v

∥∥∥∥∥, then f{w}= 0 and f{w} · �Sw = 0, while w·w = v·v > 0; hence, the penultimate term vanishes.

If w =
∥∥∥∥∥

u

v

∥∥∥∥∥, then

(4.23)

We will take for b0 the preliminary inequality

(4.24)

Taking into account the fact that all of gi(x) vanish at the ends of the interval [0, l], we have

(4.25)

Carrying out the summation in (4.25) and taking into account the first inequality of (4.4), we finally obtain

(4.26)

Thus,

(4.27)

The right-hand side of this inequality is as small as desired in the sphere S(δ̄) for sufficiently small �̄.
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It remains to prove that positive values of �̃ exist, such that for w �= 0, w ∈ ∂�p(�̃) ∩ S(�̄) the following inequality
holds

(4.28)

We will first prove this for the simpler non-degenerate case when the operator A has no zero eigenvalues, and the
inequality will then be proved for the degenerate case, too. If the operator A is non-degenerate, then the subspaces U◦
and �◦ are empty, B = −A− + A+, and the operators �a and �s are non-zero in mutually orthogonal subspaces, which
are invariant; therefore

(4.29)

The operator �s has 2m non-zero eigenvalues �1, (−�1), . . ., �m, (−�m), where �i = √−ai, with eigenvectors
�+

i , �−
i , and is identically equal to zero in the infinite-dimensional subspace �+. We select �̃ and �̄ so, that the interval

[�̃(1 − 	), �̃(1 + 	)] lies inside the interval whose ends are two neighboring eigenvalues differing from one another;
for example,

(4.30)

If there is only one negative eigenvalue a1 < 0 (and correspondingly, one �1 = √−a1 > 0), then suppose for example,
that

Here, by virtue of inequalities (4.20) we have

(4.31)

i.e., the quantity � differs from any of the eigenvalues of the operator �s. Suppose

(4.32)

(4.33)

We will represent w as the sum of eigenvectors (which are mutually orthogonal)

(4.34)

We have

Thus,

(4.35)

The right-hand side of inequality (4.35) is positive and finite. Hence, for sufficiently small �̄ and, so, sufficiently
small 	, jointly with it, the derivative (4.21) is strictly positive, too. Hence, the trajectories emanating from non-zero
points of intersection of regions �p(�̃) and S(�̄), while remaining in the region S(�̄), do not leave the region �p(�̃),
but they then reach the boundary ∂S(�̄/2), which just implies the instability with respect to the norm |w|.

We now turn to the case of a degenerate operator A. In this case, B = −A− + b0I0 + A+ (3.11), where the positive
number b0 is now restricted only by the inequality b0 ≤ |a1| (4.24), but in principle it can be taken to be fairly small
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(although finite), which will be done in what follows. Note that the lower bound for the number b0 is stipulated by the
fact that it occurs in the lower estimate for the form u·Bu (2.10) via the equality (2.7).

In the case when the operators �s and �a are degenerate they are geared in the subspace �0:

The right-hand side of the last inequality is investigated in the same way in the non-degenerate case, but the
eigenvalues of the operator �s in the subspace �0 must be obtained. It can be verified, that each of the vectors
gi, i = m + 1, . . . , m + m′ (that form an orthonormal basis in U0) generates a pair of eigenvectors of the operator �S

with eigenvalues �0 and −�0:

Denoting the linear combination of eigenvectors with the eigenvalues �0 in the expansion of w by w+
0 , and the analogous

combination for the eigenvalue −�0 by w−
0 , we obtain

Hence

(4.36)

We recall that � differs by as little as desired from �̃ (4.31), and it needs to be shown that �̃ and �0 can be chosen

so that they are positive and finite, whereas the difference min
(

(�i − �)2,
(
�0 − �

)2
, �2

)
− �2

0 is also positive and

finite. Consider two cases: (1) m̃ = 1 and (2) m̃ > 1, where by m̃ we mean the number of distinct negative eigenvalues
of the operator A (and an equal number of distinct values of �i).

Case 1. There is only �1 > 0. Suppose

(4.37)

Then

(4.38)

Case 2. There are at least two distinct neighboring eigenvalues �1 and �2, furthermore

(4.39)

Suppose

(4.40)
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Then

(4.41)

Thereby the possibility of choosing appropriate values of the numbers �̃ and �0 in both cases is shown.
This completes the proof of the instability of the system considered with respect to the norm |w| (3.18). However,

the norm (3.18) contains both the “strain” term (the first term) and the velocity term, namely, the kinetic energy.
Nevertheless it is traditional in the theory of elasticity and in the mechanics of solids in general, that the displacements
and strains are of the main interest; measures of the deviation of a system from the equilibrium position, investigated
for stablility or instability are usually related to them. Therefore it would be desirable to prove that the solution w(t)
increases not only in the norm (3.18), but also in some strain norm, not dependent on the velocities. In Movchan’s
terminology this corresponds to instability with respect to two metrics, and this kind of instability will be derived in
the next section from the already proven instability with respect to the norm |w|.

5. Definition of instability with respect to two norms and the proof of its presence

Specifying for the problem in hand the definition of instability with respect to two metrics,4 we state the following
definition of instability with respect to two norms.

Definition. The zero solution of system (1.11) is said to be unstable with respect to two norms, if � > 0 can be found,
such that for any � > 0 a solution w(t) exists, obeying at the initial instant of time the inequality

(5.1)

and at some instant t1 the inequality

(5.2)

Note that it was proved above that a solution w(t) exists, which reaches the boundary of a sphere S(�̄/2) and at the
same time does not leave the pseudocone �p(�̃), 0 < �̃ < �1. By virtue of the inequalities (4.20) in combination with
the smallness of the sphere S(�̄/2) this means that w(t) does not leave the cone �(�̃(1 − 	)), where 	 is a number as
small as desired:

Hence it follows, that

By virtue of the estimate (2.10), in the cone �(�̃) we have
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It is obvious, that, if we take

then at the time when the solution reaches the sphere boundary ∂S(�̄/2), i.e. when the equality |w(t1)| = �̄/2 is satisfied,
inequality (5.2) will hold, which also denotes the instability with respect to two norms defined above.

6. Concluding remarks

The version of Persidskii’s sector method used here differs from its published versions: as a sector in the phase
space of a system we take the cone whose surface is specified by a fixed positive value of the characteristic exponent
of growth for a certain norm of solutions. It is essential that this value be chosen so that it is different from any of the
positive eigenvalues of the operator of linear approximation.

The instability with respect to two norms proved in the final analysis has the following clear mechanical interpre-
tation: however small the initial disturbances in velocities, displacements or strains, among them there are those that,
in the course of subsequent motion of the body, the strain attains a specified finite value, at least at some point of the
body.

We would expect the method of proof suggested here to be quite suitable in principle for more general conservative
continuous systems also (for example, for three-dimensional elastic bodies).
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